Santos Basin Tension Leg Platform Utilizing Embedded Fiber Optics in Carbon Fiber Tendons

نویسندگان

  • Mohammed Y. Elasmai
  • Poojan Jhaveri
  • Harshvardhan Sinha
  • Dylan Barstow
چکیده

1. Abstract Tension Leg Platforms (TLPs), if designed properly, are the best oil and natural production facilities in the world. They are utilized globally by prominent oil companies such as Hess, Conoco Philips, and Shell. We have designed a prototype TLP with two novel features. First, our prototype structure, dubbed the Governor’s School of Engineering and Technology (GSET) TLP, is taller than any preexisting structure. Our second novel contribution, which enables a taller structure, is the use of optical fiber inside the tendons to efficiently and accurately locate cracks in the members of the structure. We concluded that if the optical fibers are embedded in the tendons, a crack in the tendons would yield a crack in the fiber, thus revealing a system failure. We also performed numerous calculations to determine the wave force that this structure will undergo. Our main goal in the design process was to adapt rather than replace. We created a structure that will adapt to the environmental conditions in the Santos Basin. Optimizing different parts of the GSET TLP instead of replacing them accomplishes this.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(افزایش مقاومت خمشی کامپوزیتها توسط کشش الیاف (یادداشت فنی

In the present research work, the flexural modulus and strength of glass fiber-epoxy resin and carbon fiber-epoxy resin composites have been enhanced through fiber tension during curing of the polymeric resin. This study showed that the tension applied on the fibers increased the flexural modulus of the glass-epoxy composites up to 12% and the flexural strength up to 19%. The flexural modulus a...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Comparison between linear and nonlinear models for surge motion of TLP

Tension-Leg Platform (TLP) is a vertically moored floating structure. The platform is permanently mooredby tendons. Surge equation of motion of TLP is highly nonlinear because of large displacement and it should be solved with perturbation parameter in time domain. This paper compare the dynamic motion responses of a TLP in regular sea waves obtained by applying three method in time domain usin...

متن کامل

Mechanical material characterization of an embedded Carbon nanotube in polymer matrix by employing an equivalent fiber

Effective elastic properties for carbon nanotube reinforced composites are obtained through a variety of micromechanics techniques. An embedded carbon nanotube  in  a  polymer  matrix  and  its surrounding  interphase  is  replaced with an equivalent fiber for  predicting  the  mechanical  properties of  the  carbon  nanotube/polymer composite. The effects of an interphase layer between the nan...

متن کامل

Advanced Deepwater Monitoring System

This study investigates new methods to improve deepwater monitoring and addresses installation of advanced sensors on ”already deployed” risers, flowlines, trees, and other deepwater devices. A major shortcoming of post installed monitoring systems in subsea is poor coupling between the sensor and structure. This study provided methods to overcome this problem. Both field testing in subsea envi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008